

A Thermodynamic Analysis Of Intermediary Metabolic Steps And Nitrous Oxide Production In Ammonium-Oxidizing Bacteria

Michelle N. Young^{*,1}, Joshua P. Boltz^{*}, Andrew Marcus^{*}, Jose A. Jimenez^{**}, Ahmed Al-Omari^{***}, Imre Takács^{****}, and Bruce E. Rittmann^{*}

*Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701 **Brown and Caldwell, 351 Lucien Way, Ste. 250, Maitland, FL, 32751 ***Brown and Caldwell, 1725 Duke St. Suite 250 Alexandria, VA 22314

****Dynamita, 2015 route d'Aiglun, 06910 Sigale France

¹Email: Michelle.N.Young@asu.edu

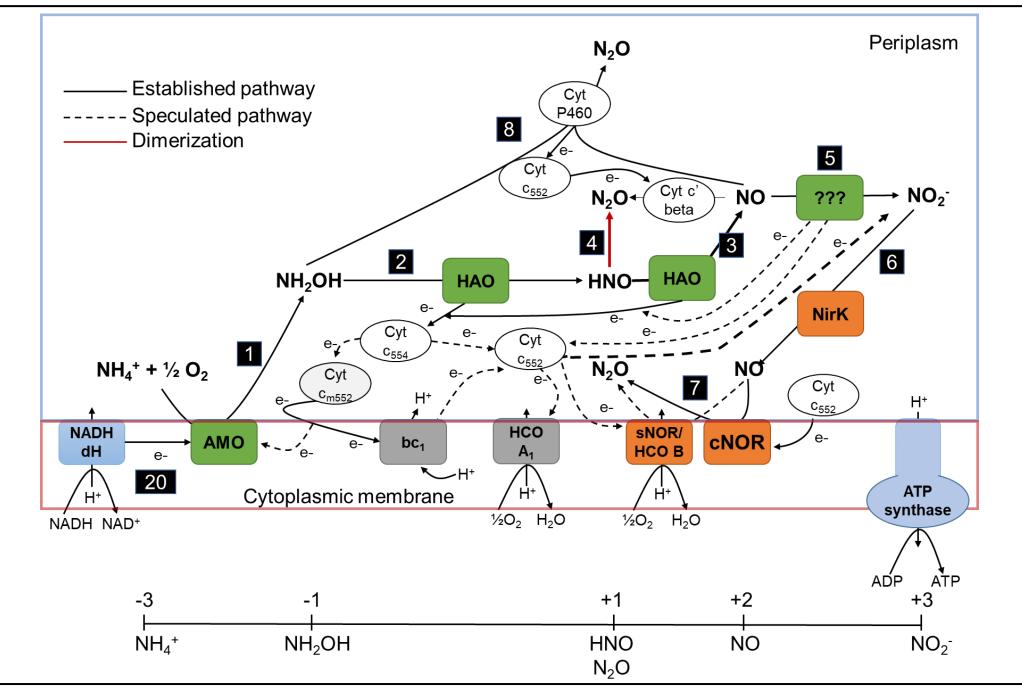
WE USE THE LATEST KNOWLEDGE OF AMMONIUM OXIDIZING BACTERIA (AOB) METABOLISM TO ESTIMATE AOB ENERGETICS AND KINETICS

The latest understanding of the metabolic pathways for AOB and thermodynamics electron equivalents modelling (TEEM) were integrated to estimate kinetic and stoichiometric parameters for the AOB's multi-step nitrification and autotrophic denitrification reactions. An energetics analysis for each reaction in the oxidation and reduction pathways resulted in an understanding of which intermediate pathways are important for respiration and biomass synthesis, how N₂O is linked to biomass growth and detoxification, and individual pathway stoichiometry and kinetics determined by TEEM can be normalized to the number of electrons used in the respiration chain to determine whole cell kinetics. This normalized TEEM approach can be applied to a variety of bacteria besides AOB to provide kinetic insights into performance.

Background

Nitrous oxide (N₂O) is 300 times more potent than CO₂ as a greenhouse gas¹ and contributes 6% of annual global greenhouse gas emissions². > 85% of N₂O emissions are from biotic processes, like agricultural soil management, wastewater treatment, and manure management³. Ammonium-oxidizing bacteria (AOB) are the primary bacteria producing N₂O and important for biological nutrient removal during wastewater treatment. AOB are generally perceived as obligate aerobes that oxidize ammonium (NH₄⁺) to nitrate (NO₂⁻). Recent advances in the understanding AOB metabolism have elucidated key mechanisms AOB nitrification, N₂O production, and NO₂⁻ reduction⁴⁻⁶. **No model has described AOB metabolism based on all the intermediate steps and their thermodynamic viability.**

Hybrid Thermodynamic Electron Equivalents Modeling (TEEM)


TEEM utilizes thermodynamics of the electron donor and acceptor half reactions and carbon assimilation processes to estimate the fraction of electrons used for biomass synthesis based on Gibbs free energy

AOB Metabolism is Complex

N₂O formation:

- Dimerization during nitrification
- Detoxification when NH₂OH reacts with NO through cyt P460
- NO reduction using NOR enzyme for respiration/biomass synthesis

AOB's metabolic pathways for nitrification and reduction

Fraction of electrons to biomass synthesis, \mathbf{f}_s^0

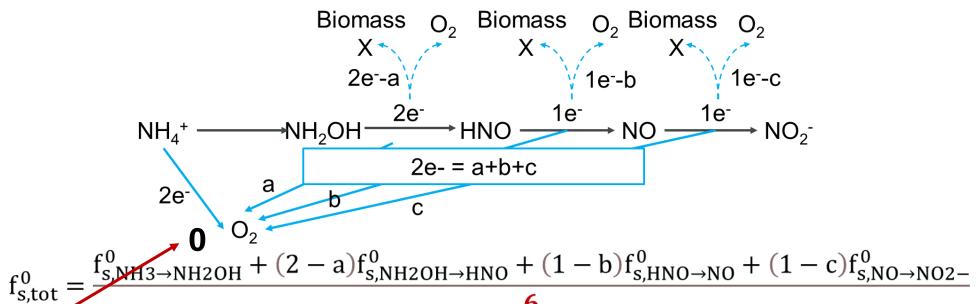
$$f_s^0 = \frac{1}{1+A} \text{ and } A = -\frac{\Delta G_s}{\epsilon \Delta G_r}$$

where ΔG_s = energy required to incorporate carbon into biomass ΔG_r = overall energy reaction between the acceptor and donor $v = \frac{f_s^0 M_c}{V}$

Yield

N,i

where $M_c = cells$ molecular weight = 113 g/mol,


 n_{e-} = number of electron equivalents $\gamma_{N,i}$ = mass of nitrogen in a donor reaction per electron equivalent

Maximum substrate utilization rate $\hat{q}_i = \frac{1 e^- eq A}{g_{X_a} d} \left(\frac{e^- eq D}{(1 - f_s^0) e^- eq A} \right) (\gamma_{N,i})$ Maximum specific growth rate $\hat{\mu}_i = \hat{q}_i Y_i$

Hybrid TEEM:

- 1. Calculate the stoichiometry/kinetics for each individual pathway that produces biomass
- 2. Normalize the individual pathway value based on the number of electrons contributed to overall biomass growth

Normalization of nitrification pathway

<u>NH₄+ Monooxygenation (AMO)</u>

 $NH_4^+ + O_2 + 2[H] \rightarrow NH_2OH + H_2O + H^+$ where [H] = electron equivalent

- 4 out of 6 electrons produced during nitrification are used in this step
- 2 electrons must be provided from downstream nitrification products (NH₂OH, HNO, or NO)
- No energy for cell maintenance or biomass synthesis from AMO

Nitrification Reduction Biomass Pathway description formation $NO_2^ NO_2^{-1}$ Oxidation of NH₃ using No [H]**←** a) NH₂OH as the electron source 45 (7) HNO as the electron source c) NO as the electron source d) Electrons from biomass decay $NO + NH_2OH$ NO 2. NH₂OH oxidation to HNO Yes 3. HNO oxidation to NO Yes [H] (9) 4. NO oxidation to NO_2^- under high DO Yes conditions N₂O HNO 5. NO oxidation to NO₂⁻ under low DO No conditions Endogenous 6. Dimerization of HNO to N_2O No 2[H] decay 7. Reduction of NO_2^- to NO using No $2H^{+}$ a) NH₂OH as the electron source b) HNO as the electron source

A model of AOB metabolism

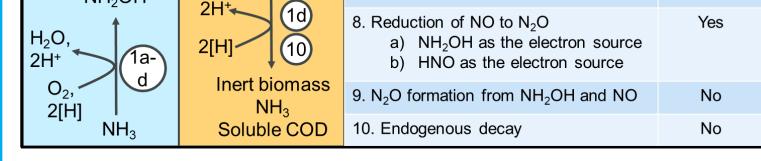
Respiration/ biomass synthesis does not occur during NH₄+ monooxygenation (Rxn 1) or NO₂reduction to NO (Rxn 7)

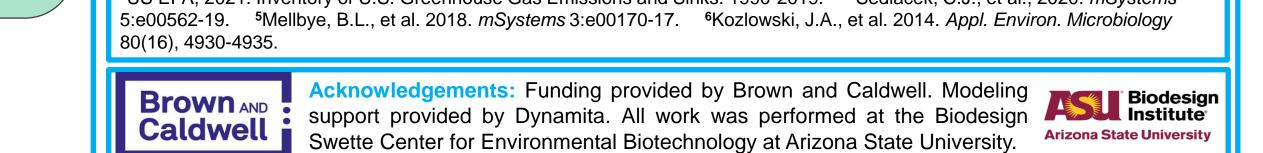
0

Normalization can also be applied to the denitrification pathway.

Normalized Whole-Cell Kinetics

Nitrification pathway


Electron source for the AMO reaction			f ⁰ _{s,tot}	Y _{tot}	$\widehat{\mathbf{q}}_{tot}$	$\widehat{\mu}_{tot}$
NH₂OH	HNO	NO	eeq cells/eeq donor	mg X _a /mg N	mg N/ mg X _a /d	1/d
0	1	1	0.057	0.14	3.7	0.70
1	1	0	0.067	0.16	5.0	0.94
_1	0	1	0.067	0.16	5.0	0.94
2	0	0	0.078	0.19	7.5	1.42


For comparison, literature values are: 0.15-0.44 3.7-7.5 0.7-1.4 <u>Reduction pathway</u>

Electron source for the NOR reaction	f ⁰ _{s,tot} eeq cells/ eeq donor	Y _{tot} mg X _a /mg N	q̂ _{tot} mg N/ mg X _a /d	μ _{tot} 1/d
NH₂OH	0.12	0.10	8.0	0.77
HNO	0.15	0.12	8.2	0.96
Mathematical mode	0.02	1.3	0.15-0.28	

- Using electron donors NH₂OH for AMO oxidation and HNO for NO reduction is most energetically favorable
- NO reduction to N₂O appears to be thermodynamically favorable, but the need for O₂ in NH₄⁺ monooxygenation likely precludes NO reduction to N₂O from becoming a major pathway
- N₂O is energetically favorable in the reduction pathway and a detoxification step in aerobic processes

References: ¹IPCC (2013). *Climate Change: The Physical Science Basis*. ²IPCC, 2014. Climate Change 2014: Synthesis Report. ³US EPA, 2021. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019. ⁴Sedlacek, C.J., et al., 2020. *mSystems*

