

Causes of Souring During Food Waste and Fats/Oils/Grease Anaerobic Co-Digestion with Municipal Sludge

Michelle N. Young^{*,1} and Bruce E. Rittmann^{*,2}

*Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701 ¹Email: Michelle.N.Young@asu.edu ²Email: Rittmann@asu.edu

CAN WE IDENTIFY CAUSES AND LEADING INDICATORS OF ANAEROBIC CO-DIGESTION (AcoD) SOURING UNDER DYNAMIC CONDITIONS?

We performed experiments to identify the causes of rapid short-term and longer-term AcoD souring with constantly changing feedstocks. Ultimately, souring was caused by depletion of bicarbonate (HCO₃-) alkalinity in the system, leaving little buffering capacity to deal with the variable FW/FOG feed streams. In rapidly souring reactors, the failures were caused by rapid fermentation of FW/FOG production of volatile fatty acids, depleting HCO_{3⁻} alkalinity. Reactors that soured after several months of operation failed because of a slower depletion of HCO_3^- alkalinity due to rapid volatile fatty acid (VFA) production after feeding and increased off-gassing of CO_2 due to short-term decreases in pH. Souring was reversed when identified early and HCO_3^- added to the system. HCO_3^- alkalinity concentration was the leading indicator of souring by 7-15 days vs. other indicators.

Background

challenging due to rapid fermentation of FW/FOG, causing pH depression to < 6.0 causing souring and methanogenic inhibition.

• R1 HCO3-:total

õ