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PROJECT GOAL: WORK TOWARDS A 
BETTER PREDICTIVE MODEL OF 
AMMONIUM OXIDIZING BACTERIA (AOB) 
PERFORMANCE

 Gain a better understanding of AOB metabolism to 
develop a more-accurate model of their 
performance 
 Use metabolic information for better estimates of 

AOB energetics and kinetics
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LATEST UNDERSTANDING OF AOB 
METABOLIC PATHWAY
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THREE MISUNDERSTOOD/IGNORED 
MECHANISMS

 N2O can be produced at a variety of steps 
 Ammonium monooxygenation (AMO) is an electron 

sink
 Respiration and biomass synthesis are not 

associated with all steps in nitrification or reduction
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LATEST UNDERSTANDING OF AOB 
METABOLIC PATHWAY
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THREE MISUNDERSTOOD/IGNORED 
MECHANISMS

NH4
+ + O2 + 2[H]  NH2OH + H2O + H+

where [H] = electron equivalent

• 4 out of 6 electrons produced during nitrification 
are invested in this step!

• 2 additional electrons are from downstream 
products

• Those electrons do not produce energy or 
biomass synthesis 
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LATEST UNDERSTANDING OF AOB 
METABOLIC PATHWAY
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ENERGETICS, STOICHIOMETRY, AND 
KINETICS

 Use the Thermodynamic Electron Equivalents Model (TEEM) to 
estimate the stoichiometry and kinetics of respiration/biomass 
growth steps

 Using Gibbs free energies of donor and acceptor half reactions 
and carbon assimilation energetics, calculate fraction of electrons 
used for biomass synthesis (fs0)

 Using fs0, calculate yield (Y), maximum substrate utilization rate 
(�q), maximum specific growth rate (�μ)

 Described in McCarty (2008) and Sections 5.4 and 6.2 of 
Rittmann and McCarty (2020)
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HYBRID TEEM PATHWAY ANALYSIS

 Calculate the stoichiometry/kinetics for each individual pathway 
that can produce biomass

 Normalize the individual pathway value based on the number of 
electrons contributed to overall biomass growth for the whole cell

 Compare whole cell values to literature
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Reaction 
#

Electron donor 
for respiration 
and biomass 

synthesis

Pathway 
fraction of 
electron to 

cell 
synthesis, 

fs
0

Yield, Y 
(gVSS/gN)

Maximum 
substrate 
utilization 
rate, �𝐪𝐪 (g 

N/gVSS/d)

Maximum 
specific 

growth rate, 
�𝛍𝛍 (1/d)

1a-d NH4
+ to NH2OH 0 N/A N/A N/A

2 NH2OH to HNO 0.17 0.14 8.4 1.2

3 HNO to NO 0.23 0.19 18.2 1.8

5 NO to NO2
- 0.24 0.19 18.4 1.8

INDIVIDUAL PATHWAYS IN NITRIFICATION
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WHOLE CELL KINETICS FOR NITRIFICATION 
BASED ON INDIVIDUAL PATHWAY KINETICS

Electron source for the 
AMO reaction

𝐟𝐟𝐬𝐬,𝐭𝐭𝐭𝐭𝐭𝐭
𝟎𝟎 Ytot �𝐪𝐪tot �𝛍𝛍tot

NH2OH HNO NO eeq cells/eeq
donor

mg Xa /mg 
N

mg N/ mg
Xa/d

1/d

0 1 1 0.057 0.14 3.7 0.70

1 1 0 0.067 0.16 5.0 0.94

1 0 1 0.067 0.16 5.0 0.94

2 0 0 0.078 0.19 7.5 1.42

For comparison, literature values are: 0.15-0.44 3.7-7.5 0.7-1.4
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WHOLE CELL KINETICS FOR REDUCTION
BASED ON INDIVIDUAL PATHWAY KINETICS

Electron source for the 
NOR reaction

𝐟𝐟𝐬𝐬,𝐭𝐭𝐭𝐭𝐭𝐭
𝟎𝟎 Ytot �𝐪𝐪tot �𝛍𝛍tot

eeq
cells/eeq

donor

mg Xa /mg 
N

mg N/ mg
Xa/d

1/d

NH2OH 0.12 0.10 8.0 0.77

HNO 0.15 0.12 8.2 0.96

Literature values based on 
mathematical modeling only are:

0.02 1.3 0.15-0.28
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• Provide an up-to-date synopsis of AOB 
metabolism

• Which pathways contribute to biomass growth
• Determine stoichiometry and kinetics based on 

thermodynamic electron equivalents modeling 
for the individual pathways

• Reconcile individual pathway values vs whole 
cell values

• Gained insights into which electron donors are 
likely preferrable under different conditions

CONCLUSIONS
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